已知数列{a n }的前n项和为S n ,a 2 = 3 2 ,2S n+1 =3S n +2(n∈N * ).(1)证明数列{a
已知数列{an}的前n项和为Sn,a2=32,2Sn+1=3Sn+2(n∈N*).(1)证明数列{an}为等比数列,并求出通项公式;(2)设数列{bn}的通项bn=1an...
已知数列{a n }的前n项和为S n ,a 2 = 3 2 ,2S n+1 =3S n +2(n∈N * ).(1)证明数列{a n }为等比数列,并求出通项公式;(2)设数列{b n }的通项b n = 1 a n ,求数列{b n }的前n项的和T n ;(3)求满足不等式3T n >S n (n∈N + )的n的值.
展开
翦州怨5566
推荐于2016-06-24
·
超过69用户采纳过TA的回答
知道答主
回答量:185
采纳率:100%
帮助的人:65.6万
关注
(1)由2S n+1 =3S n +2得到,2S n =3S n-1 +2(n≥2) 则2a n+1 =3a n (n≥2), 又a 2 = ,2S 2 =3S 1 +2,∴ a 1 =1, = 则 = (n∈ N * ) 故数列{a n }为等比数列,且 a n =( ) n-1 (2)由(1)知, a n = ( ) n-1 ,又由数列{b n }的通项b n = ,则 b n = ( ) n-1 故 T n = = 3[1-( ) n ] (3)由(1)知, a n = ( ) n-1 ,则 S n = = 2[( ) n -1] 由(2)知, T n =3[1- ( ) n ] 则3T n >S n (n∈N + )? 9[1- ( ) n ]>2[ ( ) n -1] , 令 t= ( ) n (t>1),则 9(1- )>2(t-1) , 解得 1<t< ,即 1<( ) n < 又由 f(x)=( ) x 在R上为增函数, ( ) 3 = × , ( ) 4 = × , 故n=1,2,3 |
收起
为你推荐: