试讨论函数f(x)=ax/x2-1,x属于(-1,1)的单调性(其中a不等于0)

林晋立
2012-07-26 · TA获得超过1017个赞
知道小有建树答主
回答量:594
采纳率:0%
帮助的人:331万
展开全部
解:设-1<x1<x2<1,
f(x1)-f(x2)= ax1/(x1^2-1)-ax2/(x2^-1)
= a(x2-x1)(1+x1x2) / [(x1^2-1)(x2^2-1)]
因为x2-x1>0,1+x1x2>0,(x1^-1)<0,(x2^2-1)<0
当a>0时,a(x2-x1)(1+x1x2)/[(x1^2-1)(x2^2-1)]>0,即
f(x1)>f(x2),函数是(-1,1)上减函数
当a<0时,a(x2-x1)(1+x1x2)/[(x1^2-1)(x2^2-1)]<0,即
f(x1)<f(x2),函数是(-1,1)上增函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式