展开全部
判断一个数除以9的余数,等于它所有数位上数字之和除以9的余数。
————————————————————————————————
为了排版方便,下面选取一个五位数来证明,任意多位数用10^n符号即可,方法一样。
abcde
=10000a+1000b+100c+10d+e
=9999a+999b+99c+9d+(a+b+c+d+e)
注意到,9999a+999b+99c+9d是9的倍数,不影响除以9的余数。
证毕。
下面证明一个更为简单的方法。
判断一个数除以9的余数,可先将它任意分段,这个余数等于任意分段后所有段的数之和除以9的余数。
————————————————————————————————
证明:
我们仍然选取一个五位数,任意分段。不妨分为2、1、2。
abcde
=ab,c,de
=1000ab+100c+de
=999ab+99c+(ab+c+de)
注意到,999ab+99c是9的倍数,不影响除以9的余数。
其它分法也一样
证毕。
下面开始做题。
将1234……20092010作如下分段:
1、2、3、4、5、6、7、8、9、10、11、12、……、2009、2010
于是
1+2+3+……+2010
=(1+2010)×2010÷2
=2011×1005
=2021055也就是说,1234……20092010÷9的余数等于2021055÷9的余数,
再次使用求和的方法:
2021055÷9的余数相当于
2+0+2+1+0+5+5=15除以9的余数,
而15÷9=1……6
因而答案即为6。
【经济数学团队为你解答!】
————————————————————————————————
为了排版方便,下面选取一个五位数来证明,任意多位数用10^n符号即可,方法一样。
abcde
=10000a+1000b+100c+10d+e
=9999a+999b+99c+9d+(a+b+c+d+e)
注意到,9999a+999b+99c+9d是9的倍数,不影响除以9的余数。
证毕。
下面证明一个更为简单的方法。
判断一个数除以9的余数,可先将它任意分段,这个余数等于任意分段后所有段的数之和除以9的余数。
————————————————————————————————
证明:
我们仍然选取一个五位数,任意分段。不妨分为2、1、2。
abcde
=ab,c,de
=1000ab+100c+de
=999ab+99c+(ab+c+de)
注意到,999ab+99c是9的倍数,不影响除以9的余数。
其它分法也一样
证毕。
下面开始做题。
将1234……20092010作如下分段:
1、2、3、4、5、6、7、8、9、10、11、12、……、2009、2010
于是
1+2+3+……+2010
=(1+2010)×2010÷2
=2011×1005
=2021055也就是说,1234……20092010÷9的余数等于2021055÷9的余数,
再次使用求和的方法:
2021055÷9的余数相当于
2+0+2+1+0+5+5=15除以9的余数,
而15÷9=1……6
因而答案即为6。
【经济数学团队为你解答!】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询