怎么用行列式解方程组,请举例说明,谢谢! 5
2个回答
展开全部
a11x+a12y=b1
a21x+a22y=b2
则x=
|b1 a12|
|b2 a22|
-------------
|a11 a12|
|a21 a22|
在线性代数,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作det(A)。在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”。行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用。
行列式概念的最初引进是在解线性方程组的过程中。行列式被用来确定线性方程组解的个数,以及形式。随后,行列式在许多领域都逐渐显现出重要的意义和作用。于是有了线性自同态和向量组的行列式的定义。
行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质。
若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。
a21x+a22y=b2
则x=
|b1 a12|
|b2 a22|
-------------
|a11 a12|
|a21 a22|
在线性代数,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作det(A)。在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”。行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用。
行列式概念的最初引进是在解线性方程组的过程中。行列式被用来确定线性方程组解的个数,以及形式。随后,行列式在许多领域都逐渐显现出重要的意义和作用。于是有了线性自同态和向量组的行列式的定义。
行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质。
若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2015-02-25 · 知道合伙人互联网行家
关注
展开全部
在线性代数,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作det(A)。在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”。行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用。
行列式概念的最初引进是在解线性方程组的过程中。行列式被用来确定线性方程组解的个数,以及形式。随后,行列式在许多领域都逐渐显现出重要的意义和作用。于是有了线性自同态和向量组的行列式的定义。
行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质。
若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。
行列式概念的最初引进是在解线性方程组的过程中。行列式被用来确定线性方程组解的个数,以及形式。随后,行列式在许多领域都逐渐显现出重要的意义和作用。于是有了线性自同态和向量组的行列式的定义。
行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质。
若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询