
过点(1,3)且与曲线y=x3+2x相切的直线方程为______
展开全部
设直线l:y-3=k(x-1).∵y′=3x2+2,∴y′|x=1=5,
又∵直线与曲线均过点(1,3),于是直线y-3=k(x-1)与曲线y=x3+2x相切于切点(1,3)时,k=5.
若直线与曲线切于点(x0,y0)(x0≠0),则k=
,∵y0=x03+2x0,
∴
=x02-3x0+2,
又∵k=y′|_x=x0=3x02+2,
∴x02-3x0+2=3x02+2,∴2x02+3x0=0,
∵x0≠0,∴x0=-
,∴k=x02-3x0+2=
,
故直线l的方程为11x-4y+1=0或5x-y-2=0.
故答案为:11x-4y+1=0或5x-y-2=0.
又∵直线与曲线均过点(1,3),于是直线y-3=k(x-1)与曲线y=x3+2x相切于切点(1,3)时,k=5.
若直线与曲线切于点(x0,y0)(x0≠0),则k=
y0?3 |
x0?1 |
∴
y0?3 |
x0?1 |
又∵k=y′|_x=x0=3x02+2,
∴x02-3x0+2=3x02+2,∴2x02+3x0=0,
∵x0≠0,∴x0=-
3 |
2 |
11 |
4 |
故直线l的方程为11x-4y+1=0或5x-y-2=0.
故答案为:11x-4y+1=0或5x-y-2=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询