如图,矩形ABCD中,AD=nAB,E是AB的中点,BF⊥EC于F,连接FD,FG⊥FD交直线BC于点G.(1)求证:△FBG∽

如图,矩形ABCD中,AD=nAB,E是AB的中点,BF⊥EC于F,连接FD,FG⊥FD交直线BC于点G.(1)求证:△FBG∽△FCD;(2)当n=1时,求CG:BC的... 如图,矩形ABCD中,AD=nAB,E是AB的中点,BF⊥EC于F,连接FD,FG⊥FD交直线BC于点G.(1)求证:△FBG∽△FCD;(2)当n=1时,求CG:BC的值;(3)当CG:BC=7:8时,求n的值. 展开
 我来答
大一97dU
推荐于2016-07-18 · 超过63用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:146万
展开全部
解答:(1)证明:∵四边形ABCD是矩形,
∴∠ACD=90°,
即∠BCF+∠DCF=90°,
∵BF⊥EC,FG⊥FD,
∴∠FBC+∠BCF=90°,∠BFG+∠GFC=90°,∠GFC+∠CFD=90°,
∴∠FBG=∠FCD,∠BFG=∠CFD,
∴△FBG∽△FCD;

(2)当n=1时,AD=AB,
∴四边形ABCD是正方形,
∴AB=BC=CD,
∵E是AB的中点,
∴在Rt△EBC中,tan∠BCE=
BE
BC
=
1
2

∴在Rt△BCF中,
BF
CF
=
1
2

∵△FBG∽△FCD;
∴BG:CD=BF:CF=1:2,
即BG:BC=1:2,
∴CG:BC=1:2;

(3)∵CG:BC=7:8,
∴BG:BC=1:8,
∴BG:CD=n:8,
∵E是AB的中点,
∴BE=
1
2
AB,
∵AD=nAB,
∴在Rt△EBC中,tan∠BCE=
BE
BC
=
1
2n

∴在Rt△BCF中,
BF
CF
=
1
2n

∵△FBG∽△FCD;
∴BG:CD=BF:CF=1:2n,
∴2n2=8,
解得:n=±2(-2舍去).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式