线性代数 如何证明 r(A+B)<=r(A,B)<=rA+rB?
前半部分:A+B可被A,B线性表示,所以r(A+B)<=r(A,B)后半部分:r(A,B)<=rA+rB怎么证??...
前半部分:A+B可被A,B线性表示,所以 r(A+B)<=r(A,B)
后半部分:r(A,B)<=rA+rB怎么证?? 展开
后半部分:r(A,B)<=rA+rB怎么证?? 展开
4个回答
展开全部
A的列向量的极大无关组和B的列向量组的极大无关组构成的向量组,为方便称其为向量组C。
(A,B)的列向量组等价于向量组C,故r(A,B)=r(C)
C中一共有r(A)+r( B)个向量,故r(C)<=r(A)+r( B)
故r(A,B)<=r(A)+r( B)
在线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。
扩展资料:
在线性代数中,行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。行向量的转置是一个列向量,反之亦然。所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
参考资料来源:百度百科——列向量
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
A的列向量的极大无关组和B的列向量组的极大无关组构成的向量组,为方便称其为向量组C。
(A,B)的列向量组等价于向量组C,故r(A,B)=r(C)
C中一共有r(A)+r( B)个向量,故r(C)<=r(A)+r( B)
故r(A,B)<=r(A)+r( B)
(A,B)的列向量组等价于向量组C,故r(A,B)=r(C)
C中一共有r(A)+r( B)个向量,故r(C)<=r(A)+r( B)
故r(A,B)<=r(A)+r( B)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二部分证明:
设【αi】(i=1,2,...,r)为A的极大线性无关组,有r个向量;【βj】(j=1,2,...,t)为B的极大线性无关组,有t个向量。由极大线性无关组的性质可知,【αi】与A等价,【βj】与B等价。且R(A)=R(αi)=r,R(B)=R(βj)=t。
现在有矩阵(A,B),其秩为矩阵的极大线性无关组的向量个数。而由前面的分析可知,如果【αi】与【βj】线性无关,(A,B)的极大线性无关组为【αi,βj】,R(A,B)=r+t。若【αi】也【βj】线性相关,则【αi,βj】的向量数肯定小于r+t,即R(A,B)≤r+t=R(A)+R(B)
设【αi】(i=1,2,...,r)为A的极大线性无关组,有r个向量;【βj】(j=1,2,...,t)为B的极大线性无关组,有t个向量。由极大线性无关组的性质可知,【αi】与A等价,【βj】与B等价。且R(A)=R(αi)=r,R(B)=R(βj)=t。
现在有矩阵(A,B),其秩为矩阵的极大线性无关组的向量个数。而由前面的分析可知,如果【αi】与【βj】线性无关,(A,B)的极大线性无关组为【αi,βj】,R(A,B)=r+t。若【αi】也【βj】线性相关,则【αi,βj】的向量数肯定小于r+t,即R(A,B)≤r+t=R(A)+R(B)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证r(A,B)小于(A 0
0 B)
0 B)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询