为什么多元函数即使所有偏导数都存在 仍可能不连续
3个回答
展开全部
因为偏导存在只能保证在几个方向上,函数改变量与自变量改变量比的极限,在自变量趋近于0时存在,从而只能推出在这几个方向上自变量改变无穷小时,函数的改变量也无穷小。
但是不能推出在任何方向上自变量改变无穷小时,函数的改变量也无穷小。所以即使所有偏导数都存在仍可能不连续。
求法
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一悉汪点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数腊胡。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一睁局仔样的。
展开全部
因为偏导存在只能保证在几个方向上,函数改变量与自变量改变量比的极限,在自变量趋近于0时存在,从而只能推出在这几个方向上自变量改变无穷小友贺时,函数好哪派的改变缓桥量也无穷小,但是不能推出在任何方向上自变量改变无穷小时,函数的改变量也无穷小。所以即使所有偏导数都存在仍可能不连续。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为偏导存在只能保证在几个方向上,函数改变量与自变量改变量比的极限,在自变量趋近闷瞎于0时存在,从而只能推出在这几个方向上自变量蚂手空改变无穷小时,函数的改变量也无穷小,但是不能推出在任何方向上自薯敬变量改变无穷小时,函数的改变量也无穷小。所以即使所有偏导数都存在仍可能不连续。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询