
已知数列{an},an≥0,a1=0,(an+1)^2+a(n+1)-1=an^2(n∈N+)求证当n∈N+时,an<an+1
3个回答
展开全部
First, we should prove that an<1.
Because a1=0<1, if 0<=an<1, then (an+1)^2+a(n+1)<2, then 0<=an+1<1.
Second, we prove the conclusion.
Because 0<=an<1 for all positive integer n, so a(n+1)-1<0, then (an+1)^2>an^2.
So an<an+1.
Because a1=0<1, if 0<=an<1, then (an+1)^2+a(n+1)<2, then 0<=an+1<1.
Second, we prove the conclusion.
Because 0<=an<1 for all positive integer n, so a(n+1)-1<0, then (an+1)^2>an^2.
So an<an+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询