矩阵A线性无关,矩阵A不能由B线性表示,为什么B就是线性相关的?
原因:A不能由B线性表示,即BX=A无解,所以有R(B)<R(B,A)。而因为A线性无关,所以R(A)=n。所以R(B)<n,所以B线性相关。
在向量空间V的一组向量A:
向左转|向右转
则称向量组A是线性相关的,否则数 k1, k2, ···,km全为0时,称它是线性无关。
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
扩展资料:
线性相关的一些定理介绍:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
3、两个向量a、b共线的充要条件是a、b线性相关 。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。
参考资料来源:百度百科-线性相关
A不能由B线性表示,即BX=A无解,所以有R(B)<R(B,A)。而因为A线性无关,所以R(A)=n。所以R(B)<n,所以B线性相关。
在向量空间V的一组向量A:
则称向量组A是线性相关的,否则数 k1, k2, ···,km全为0时,称它是线性无关。
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
扩展资料:
相关性质:
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)。
6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)。
7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。
参考资料来源:百度百科-线性相关
怎么是和?哪来的和?
看《线性代数》教材上关于线性相关的定义就知道了。