若π/4<α<3π/4,0<β<π/4,cos(π/4-α)=3/5,sin(3π/4+β)=5/13,则sin(α+β)=?
1个回答
展开全部
∵π/4<α<3π/4
∴-π/2<π/4-α<0
∵cos(π/4-α)=3/5
∴sin(π/4-α)=-4/5
∵0<β<π/4
∴3π/4<3π/4+β<π
∵sin(3π/4+β)=5/13
∴cos(3π/4+β)=-12/13
∴sin(α+β)=-cos(π/2+α+β)
=-cos[(3π/4+β)-(π/4-α)]
=-cos(3π/4+β)cos(π/4-α)- sin(3π/4+β)sin(π/4-α)
=12/13*3/5-5/13*(-4/5)
=56/65
∴-π/2<π/4-α<0
∵cos(π/4-α)=3/5
∴sin(π/4-α)=-4/5
∵0<β<π/4
∴3π/4<3π/4+β<π
∵sin(3π/4+β)=5/13
∴cos(3π/4+β)=-12/13
∴sin(α+β)=-cos(π/2+α+β)
=-cos[(3π/4+β)-(π/4-α)]
=-cos(3π/4+β)cos(π/4-α)- sin(3π/4+β)sin(π/4-α)
=12/13*3/5-5/13*(-4/5)
=56/65
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询