已知正项等比数列an前n项和为sn,s2=10,a3=32
设bn=log2(an),T(2n)=b1b2-b2b3+b3b4-b4b5+…+b(2n)b(2n+1)求T(2n)...
设bn=log2(an),T(2n)=b1b2-b2b3+b3b4-b4b5+…+b(2n)b(2n+1)求T(2n)
展开
展开全部
由s2=a1+a1q=10,a3=a1q^2=32,
解得a1=2,q=4, 所以an=2·4^(n-1)=2^(2n-1)
则bn=2n-1, 所以 {bn}是等差数列,且d=2,
b1b2-b2b3=b2(b1-b3)= -2d·b2= -4·b2 , b3b4-b4b5=b4(b3-b5)= -2d·b4= -4·b4, ...
T(2n)=b1b2-b2b3+b3b4-b4b5+…-b(2n)b(2n+1)
=-4(b2+b4+...+b2n)
=-4n(3+4n-1)/2
=-8n^2-4n
解得a1=2,q=4, 所以an=2·4^(n-1)=2^(2n-1)
则bn=2n-1, 所以 {bn}是等差数列,且d=2,
b1b2-b2b3=b2(b1-b3)= -2d·b2= -4·b2 , b3b4-b4b5=b4(b3-b5)= -2d·b4= -4·b4, ...
T(2n)=b1b2-b2b3+b3b4-b4b5+…-b(2n)b(2n+1)
=-4(b2+b4+...+b2n)
=-4n(3+4n-1)/2
=-8n^2-4n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询