复变函数复积分,沿指定曲线的方向 20

求解124小题... 求解1 2 4小题 展开
 我来答
分享社会民生
高粉答主

2019-12-14 · 热爱社会生活,了解人生百态
分享社会民生
采纳数:1248 获赞数:283311

向TA提问 私信TA
展开全部

对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分 ∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。


扩展资料:

复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)。

这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y)。

参考资料来源:百度百科-复变函数

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
威绍04n
推荐于2017-12-16 · TA获得超过180个赞
知道答主
回答量:148
采纳率:0%
帮助的人:41.1万
展开全部
周线就是复平面内的闭曲线,复变函数的积分类似于高等数学中对坐标的曲线积分,最一般的方法是对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分 ∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标...
追问
求解1 24 小题
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
书星天蛇瓜1P
2015-11-08 · TA获得超过164个赞
知道答主
回答量:146
采纳率:100%
帮助的人:37.1万
展开全部
复积分和第二类曲线积分有类似之处,即积分是按着有方向的曲线求解。讨论积分路径,积分区域。利用被积函数的解析性,积分区域的奇点,留数定理,复合闭路定理求解。 实数积分定积分是所有的积分的基础,包括曲线积分,曲面积分,二重积分,三重...
追问
求解124小题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式