求解高等数学 第九题类型 怎么做
展开全部
9 . 向量积有公式
i × i = j × j = k × k = 0
i × k = -k × i = -j
i × j = k
(1) 积分是向量 = -j ∫<0, π> costdt = -j [sint]<0, π> = 0
(2) 积分是向量 = k ∫<0, π> tcostdt - j ∫<0, π> sintdt
= k ∫<0, π> tdsint - j [-cost]<0, π>
= k { [tsint]<0, π> - ∫<0, π> sintdt } - 2j
= k [cost]<0, π> - 2j
= -2k - 2j = -2j - 2k
i × i = j × j = k × k = 0
i × k = -k × i = -j
i × j = k
(1) 积分是向量 = -j ∫<0, π> costdt = -j [sint]<0, π> = 0
(2) 积分是向量 = k ∫<0, π> tcostdt - j ∫<0, π> sintdt
= k ∫<0, π> tdsint - j [-cost]<0, π>
= k { [tsint]<0, π> - ∫<0, π> sintdt } - 2j
= k [cost]<0, π> - 2j
= -2k - 2j = -2j - 2k
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询