设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.
展开全部
过点P作DA的平行线,过点A作DP的平行线,两者相交于点E;连接BE
因为DP//AE,AD//PE
所以,四边形AEPD为平行四边形
所以,∠PDA=∠AEP
已知,∠PDA=∠PBA
所以,∠PBA=∠AEP
所以,A、E、B、P四点共圆
所以,∠PAB=∠PEB
因为四边形AEPD为平行四边形,所以:PE//AD,且PE=AD
而,四边形ABCD为平行四边形,所以:AD//BC,且AD=BC
所以,PE//BC,且PE=BC
即,四边形EBCP也是平行四边形
所以,∠PEB=∠PCB
所以,∠PAB=∠PCB
因为DP//AE,AD//PE
所以,四边形AEPD为平行四边形
所以,∠PDA=∠AEP
已知,∠PDA=∠PBA
所以,∠PBA=∠AEP
所以,A、E、B、P四点共圆
所以,∠PAB=∠PEB
因为四边形AEPD为平行四边形,所以:PE//AD,且PE=AD
而,四边形ABCD为平行四边形,所以:AD//BC,且AD=BC
所以,PE//BC,且PE=BC
即,四边形EBCP也是平行四边形
所以,∠PEB=∠PCB
所以,∠PAB=∠PCB
深圳圣斯尔电子技术有限公司
2023-06-12 广告
2023-06-12 广告
非接触式电压测量是一种利用电容耦合原理,通过测量空中两点电压的大小来推导出空中电场的情况的方法。该方法不需要与物体表面直接电气接触,利用位移电流即可完成电压的有效测量。具体来说,非接触式电压测量系统包括信号源、前置放大电路、运放、反馈电路和...
点击进入详情页
本回答由深圳圣斯尔电子技术有限公司提供
展开全部
根据已知作过P点平行于AD的直线,并选一点E,使PE=AD=BC,利用AD∥EP,AD∥BC,进而得出∠ABP=∠ADP=∠AEP,
得出AEBP共圆,即可得出答案.
证明:作过P点平行于AD的直线,并选一点E,使PE=AD=BC,
∵AD∥EP,AD∥BC.
∴四边形AEPD是平行四边形,四边形PEBC是平行四边形,
∴AE∥DP,BE∥PC,
∴∠ABP=∠ADP=∠AEP,
可得:AEBP共圆(一边所对两角相等).
可得∠BAP=∠BEP=∠BCP,
∴∠PAB=∠PCB.
得出AEBP共圆,即可得出答案.
证明:作过P点平行于AD的直线,并选一点E,使PE=AD=BC,
∵AD∥EP,AD∥BC.
∴四边形AEPD是平行四边形,四边形PEBC是平行四边形,
∴AE∥DP,BE∥PC,
∴∠ABP=∠ADP=∠AEP,
可得:AEBP共圆(一边所对两角相等).
可得∠BAP=∠BEP=∠BCP,
∴∠PAB=∠PCB.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询