1、如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.
1、如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.2、写出(1)中的逆命题并证明它是真命题;3、在△ABC中,AD为角平分线,求证AB...
1、如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.
2、写出(1)中的逆命题并证明它是真命题;
3、在△ABC中,AD为角平分线,求证AB:AC=BD:AC 展开
2、写出(1)中的逆命题并证明它是真命题;
3、在△ABC中,AD为角平分线,求证AB:AC=BD:AC 展开
6个回答
展开全部
根据AD平分∠BAC,作DE⊥AB,DF⊥AC,由角平分线性质可知DE=DF,△ABD与△ACD等高,面积比即为底边的比.
解答:
证明:作DE⊥AB,DF⊥AC,垂足为E、F,
∵AD平分∠BAC,
∴DE=DF,
∴S△ABD:S△ACD=(1/2×AB×DE):(1/2×AC×DF)=AB:AC.
2.
如果:S△ABD:S△ACD=AB:AC。求证AD是它的角平分线.
证明:
过点D作DE⊥AB,DF⊥AC
S△ABD=1/2*AB*DE
S△ACD=1/2*AC*DF
S△ABD:S△ACD=AB:AC
∴DE=DF
∴AD是他的角平分线(点到角两边的距离相等的点在角的平分线上)
3.应该是证明:AB:AC=BD:DC吧
过A作AH垂直于BC
S(ABD)=1/2BD*AH,S(ADC)=1/2DC*AH
故S(ABD):S(ADC)=BD:DC
又有S(ABD):S(ADC)=AB:AC
故有:AB:AC=BD:DC.
解答:
证明:作DE⊥AB,DF⊥AC,垂足为E、F,
∵AD平分∠BAC,
∴DE=DF,
∴S△ABD:S△ACD=(1/2×AB×DE):(1/2×AC×DF)=AB:AC.
2.
如果:S△ABD:S△ACD=AB:AC。求证AD是它的角平分线.
证明:
过点D作DE⊥AB,DF⊥AC
S△ABD=1/2*AB*DE
S△ACD=1/2*AC*DF
S△ABD:S△ACD=AB:AC
∴DE=DF
∴AD是他的角平分线(点到角两边的距离相等的点在角的平分线上)
3.应该是证明:AB:AC=BD:DC吧
过A作AH垂直于BC
S(ABD)=1/2BD*AH,S(ADC)=1/2DC*AH
故S(ABD):S(ADC)=BD:DC
又有S(ABD):S(ADC)=AB:AC
故有:AB:AC=BD:DC.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,过D分别作AB,AC 的垂线交AB,AC于E,F两点,三角形ABD的面积等于AB乘以DE除以2,而三角形ACD的面积等于CA乘以DF除以2,而AD为角BAC的角平分线,那么DE等于DF,故1得证
2 为1的反过程,不再赘述
3,题目大概出错了,应该是AB:AC=BD:DC
2 为1的反过程,不再赘述
3,题目大概出错了,应该是AB:AC=BD:DC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据AD平分∠BAC,作DE⊥AB,DF⊥AC,由角平分线性质可知DE=DF,△ABD与△ACD等高,面积比即为底边的比.证明:作DE⊥AB,DF⊥AC,垂足为E、F,
∵AD平分∠BAC,
∴DE=DF,
∴S△ABD:S△ACD=(12×AB×DE):(12×AC×DF),
=AB:AC.
∵AD平分∠BAC,
∴DE=DF,
∴S△ABD:S△ACD=(12×AB×DE):(12×AC×DF),
=AB:AC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询