如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的指教顶点O:
(1)在图1中,你发现线段AC、BD的数量关系是______________;直线AC、BD相交成角的度数是_____________;(2)将图1的△OAB绕点O顺时针...
(1)在图1中,你发现线段AC、BD的数量关系是______________;直线AC、BD相交成角的度数是_____________;
(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否仍成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由 展开
(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否仍成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由 展开
2个回答
展开全部
解:(1)∵△OAB和△OCD都是等腰直角三角形,且叠放在一起,
∴OA=OB,OC=OD,
∴AC=BD,即线段AC、BD的数量关系是相等;
由图可直接看出,直线AC、BD相交成角的度数是90°.
(2)连接AO,延长AC交DB于点E
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,则AC仍旧等于BD,直线AC、BD相交成角的度数是90°
∵旋转一个锐角后,∠COA+∠AOD=90°,∠BOD+∠AOD=90°,
∴∠COA=∠BOD,又OC=OD,OA=OB,
∴△COA≌△DOB,∴AC=BD.
延长CA交OD于H,交BD于E,
∵△COA≌△DOB,∴∠OCA=∠BDO,又∠DHE=∠CHO,
∴∠CED=∠COD=90°,
将△OAB绕点O继续旋转更大的角时,结论仍然成立.
∴OA=OB,OC=OD,
∴AC=BD,即线段AC、BD的数量关系是相等;
由图可直接看出,直线AC、BD相交成角的度数是90°.
(2)连接AO,延长AC交DB于点E
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,则AC仍旧等于BD,直线AC、BD相交成角的度数是90°
∵旋转一个锐角后,∠COA+∠AOD=90°,∠BOD+∠AOD=90°,
∴∠COA=∠BOD,又OC=OD,OA=OB,
∴△COA≌△DOB,∴AC=BD.
延长CA交OD于H,交BD于E,
∵△COA≌△DOB,∴∠OCA=∠BDO,又∠DHE=∠CHO,
∴∠CED=∠COD=90°,
将△OAB绕点O继续旋转更大的角时,结论仍然成立.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询