已知偶函数f(x)在区间(0,正无穷)单调递增,则满足f(x)<f(1)的x取值范围是
展开全部
偶函数则有f(x)=f(|x|)
f(2x-1)<=f(1/3)
即f(|2x-1|)<=f(1/3)
f(x)在区间【0,正无穷)上单调递增
故|2x-1|<=1/3
-1/3<=2x-1<=1/3
2/3<=2x<=4/3
即1/3<=x<=2/3
望采纳!
f(2x-1)<=f(1/3)
即f(|2x-1|)<=f(1/3)
f(x)在区间【0,正无穷)上单调递增
故|2x-1|<=1/3
-1/3<=2x-1<=1/3
2/3<=2x<=4/3
即1/3<=x<=2/3
望采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询