证明:sinA+1/(1+sina+cosa0=1/2tan(a/2)+1/2
1个回答
展开全部
1+sina=sin²(a/2)+cos²(a/2)+2sin(a/2)*cos(a/2)=[sin(a/2)+cos(a/2)]²,
cosa=cos²(a/2)-sin²(a/2)=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)]
那么1+sina+cosa=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)+cos(a/2)+sin(a/2)]
=2cos(a/2)*[cos(a/2)+sin(a/2)]
所以(sina+1)/(1+sina+cosa)=[cos(a/2)+sin(a/2)]/2cos(a/2)
=[1+tan(a/2)]/2
=1/2*tan(a/2)+1/2
cosa=cos²(a/2)-sin²(a/2)=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)]
那么1+sina+cosa=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)+cos(a/2)+sin(a/2)]
=2cos(a/2)*[cos(a/2)+sin(a/2)]
所以(sina+1)/(1+sina+cosa)=[cos(a/2)+sin(a/2)]/2cos(a/2)
=[1+tan(a/2)]/2
=1/2*tan(a/2)+1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询