展开全部
x^4+y^4+(x+y)^4
=(x²+y²)²-2x²y²+(x+y)^4
=(x²+y²)²-x²y²+(x+y)^4-x²y²
=(x²+y²+xy)(x²+y²-xy)+[(x+y)²+xy][(x+y)²-xy]
=(x²+y²+xy)(x²+y²-xy)+(x²+y²+3xy)(x²+y²+xy)
=(x²+y²+xy)[(x²+y²-xy)+(x²+y²+3xy)]
=(x²+y²+xy)(2x²+2y²+2xy)
=2(x²+y²+xy)²
=(x²+y²)²-2x²y²+(x+y)^4
=(x²+y²)²-x²y²+(x+y)^4-x²y²
=(x²+y²+xy)(x²+y²-xy)+[(x+y)²+xy][(x+y)²-xy]
=(x²+y²+xy)(x²+y²-xy)+(x²+y²+3xy)(x²+y²+xy)
=(x²+y²+xy)[(x²+y²-xy)+(x²+y²+3xy)]
=(x²+y²+xy)(2x²+2y²+2xy)
=2(x²+y²+xy)²
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^4+y^4+(x+y)^4
=x^4+y^4+(x^2+2xy+y^2)^2
=x^4+y^4+(x^4+4x^2y^2+y^4+2x^3y+2xy^3+x^2y^2)
=2^4+2^4+5^2y^2+2x^3y+2xy^3
=x^4+y^4+(x^2+2xy+y^2)^2
=x^4+y^4+(x^4+4x^2y^2+y^4+2x^3y+2xy^3+x^2y^2)
=2^4+2^4+5^2y^2+2x^3y+2xy^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询