数学不等式题目求解8
x,y,z>-1,且属于R,求证(1+x^2)/(1+y+z^2)+(1+y^2)/(1+z+x^2)+(1+z^2)/(1+x+y^2)>=2...
x,y,z> -1,且属于R,求证(1+x^2)/(1+y+z^2)+(1+y^2)/(1+z+x^2)+(1+z^2)/(1+x+y^2)>=2
展开
3个回答
2012-08-07
展开全部
以sum记对三个变量取循环和。将两边同时乘以
S = sum (1+x^2)(1+y+z^2)
则由柯西不等式:
S*左端 >= (sum (1+x^2))^2
另一方面,
y <= (1+y^2)/2 => (1+x^2)(1+y+z^2) <= (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
于是
S <= sum (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
= (3/2) sum (1+x^2)(1+y^2)
<= (1/2) (sum (1+x^2))^2
从而
(1/2) (sum (1+x^2))^2*左端 >= S*左端 >= (sum (1+x^2))^2
化简即得:左端>=2
S = sum (1+x^2)(1+y+z^2)
则由柯西不等式:
S*左端 >= (sum (1+x^2))^2
另一方面,
y <= (1+y^2)/2 => (1+x^2)(1+y+z^2) <= (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
于是
S <= sum (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
= (3/2) sum (1+x^2)(1+y^2)
<= (1/2) (sum (1+x^2))^2
从而
(1/2) (sum (1+x^2))^2*左端 >= S*左端 >= (sum (1+x^2))^2
化简即得:左端>=2
展开全部
x,y,z是轮换对称的,当三者相等时,通常取到最值。
具体的用柯西做吧,其实我是选修柯西的,掌握的不是横好
具体的用柯西做吧,其实我是选修柯西的,掌握的不是横好
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
以sum记对三个变量取循环和。将两边同时乘以
S = sum (1+x^2)(1+y+z^2)
则由柯西不等式:
S*左端 >= (sum (1+x^2))^2
另一方面,
y <= (1+y^2)/2 => (1+x^2)(1+y+z^2) <= (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
于是
S <= sum (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
= (3/2) sum (1+x^2)(1+y^2)
<= (1/2) (sum (1+x^2))^2
(1/2) (sum (1+x^2))^2*左端 >= S*左端 >= (sum (1+x^2))^2
左端>=2
S = sum (1+x^2)(1+y+z^2)
则由柯西不等式:
S*左端 >= (sum (1+x^2))^2
另一方面,
y <= (1+y^2)/2 => (1+x^2)(1+y+z^2) <= (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
于是
S <= sum (1+x^2)(1+z^2) + (1+x^2)(1+y^2)/2
= (3/2) sum (1+x^2)(1+y^2)
<= (1/2) (sum (1+x^2))^2
(1/2) (sum (1+x^2))^2*左端 >= S*左端 >= (sum (1+x^2))^2
左端>=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询