2个回答
展开全部
x-∫(1->(x+y) e^(-t^2) dt = 0
x=0
0-∫(1->y) e^(-t^2) dt = 0
=> y=1
(0,1)
/
x-∫(1->(x+y) e^(-t^2) dt = 0
两边求导
1 - (1+ dy/dx) e^[-(x+y)^2 ] =0
dy/dx = { 1 - e^[-(x+y)^2 ] }/e^[-(x+y)^2 ]
dy/dx | (0,1)
={ 1 - e^[-(0+1)^2 ] }/e^[-(0+1)^2 ]
= [ 1- e^(-1) ]/e^(-1)
= e - 1
x=0
0-∫(1->y) e^(-t^2) dt = 0
=> y=1
(0,1)
/
x-∫(1->(x+y) e^(-t^2) dt = 0
两边求导
1 - (1+ dy/dx) e^[-(x+y)^2 ] =0
dy/dx = { 1 - e^[-(x+y)^2 ] }/e^[-(x+y)^2 ]
dy/dx | (0,1)
={ 1 - e^[-(0+1)^2 ] }/e^[-(0+1)^2 ]
= [ 1- e^(-1) ]/e^(-1)
= e - 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询