已知函数y=f(x)的导数f'(x)=x²(x–1),则该函数有几个极值点?
展开全部
令 f(x) = (x–1)(x-2)²(x-3)³ = y
lny = ln(x-1) + 2ln(x-2) + 3ln(x-3)
1/y * y ′ = 1/(x-1) + 2/(x-2) + 3/(x-3)
y ′ = y * {1/(x-1) + 2/(x-2) + 3/(x-3)}
= (x–1)(x-2)²(x-3)³ * {1/(x-1) + 2/(x-2) + 3/(x-3)}
= (x-2)²(x-3)³ + 2(x–1)(x-2)(x-3)³ + 3 (x–1)(x-2)²(x-3)²
f ′(1) = (1-2)²(1-3)³ + 2(1–1)(1-2)(1-3)³ + 3 (1–1)(1-2)²(1-3)²
= (-1)² * (-2)³ + 0 + 0
= - 8
lny = ln(x-1) + 2ln(x-2) + 3ln(x-3)
1/y * y ′ = 1/(x-1) + 2/(x-2) + 3/(x-3)
y ′ = y * {1/(x-1) + 2/(x-2) + 3/(x-3)}
= (x–1)(x-2)²(x-3)³ * {1/(x-1) + 2/(x-2) + 3/(x-3)}
= (x-2)²(x-3)³ + 2(x–1)(x-2)(x-3)³ + 3 (x–1)(x-2)²(x-3)²
f ′(1) = (1-2)²(1-3)³ + 2(1–1)(1-2)(1-3)³ + 3 (1–1)(1-2)²(1-3)²
= (-1)² * (-2)³ + 0 + 0
= - 8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询