如图∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,CE与AB交于点F 。
1.求证:△CEB≌△ADC2.若AD=9cm,DE=6cm,求BE和EF的长(请写详细答案)...
1.求证:△CEB≌△ADC2.若AD=9cm,DE=6cm,求BE和EF的长(请写详细答案)
展开
2个回答
展开全部
(1)解:△CEB≌△ADC
证:∵BE⊥CE于点E,AD⊥CE于点D
∴∠ADC=∠CEB=90°
∵∠ACD+∠BCE=∠ACB,
∠ACB=90°
∴∠ACD+∠BCE=90°
∵在Rt△ADC中,∠ACD+∠CAD=90°
∴∠BCE=∠CAD
∵在△CEB与△ADC中,
{∠CEB=∠ADC
∠BCE=∠CAD
CB=AC
∴△CEB≌△ADC(AAS)
解:(2)解:∵△CEB≌△ADC,
∴BE=DC,CE=AD,
∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3cm
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴EF/FD =BE/AD ,
∴EF/(6-EF)=3/9
解之得:EF=3/2cm
以上是全部过程,直接copy到本子上就行了!
祝学习进步O(∩_∩)O
证:∵BE⊥CE于点E,AD⊥CE于点D
∴∠ADC=∠CEB=90°
∵∠ACD+∠BCE=∠ACB,
∠ACB=90°
∴∠ACD+∠BCE=90°
∵在Rt△ADC中,∠ACD+∠CAD=90°
∴∠BCE=∠CAD
∵在△CEB与△ADC中,
{∠CEB=∠ADC
∠BCE=∠CAD
CB=AC
∴△CEB≌△ADC(AAS)
解:(2)解:∵△CEB≌△ADC,
∴BE=DC,CE=AD,
∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3cm
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴EF/FD =BE/AD ,
∴EF/(6-EF)=3/9
解之得:EF=3/2cm
以上是全部过程,直接copy到本子上就行了!
祝学习进步O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询