在△ABC中,角A,B,C的对边分别为a,b,c,证明:(a²-b²)/c² = sin(A-B)/sinC
2个回答
展开全部
由正弦定理:
a/sinA=c/sinC
a/c=sinA/sinC,两边同时乘以2cosB,左边分子分母同乘以c.得:
2ac*cosB/c²=2sinAcosB/sinC.
由余弦定理a²+c²-b²=2ac*cosB得:
(a²+c²-b²)/c²=2sinAcosB/sinC
两边同时减去1,可得:
(a²-b²)/c²=(2sinAcosB-sinC)/sinC
且有2sinAcosB-sinC=2sinAcosB-sin(A+B)
=2sinAcosB-(sinAcosB+cosAsinB)
=sinAcosB-cosAsinB
=sin(A-B)
则原式得证.
a/sinA=c/sinC
a/c=sinA/sinC,两边同时乘以2cosB,左边分子分母同乘以c.得:
2ac*cosB/c²=2sinAcosB/sinC.
由余弦定理a²+c²-b²=2ac*cosB得:
(a²+c²-b²)/c²=2sinAcosB/sinC
两边同时减去1,可得:
(a²-b²)/c²=(2sinAcosB-sinC)/sinC
且有2sinAcosB-sinC=2sinAcosB-sin(A+B)
=2sinAcosB-(sinAcosB+cosAsinB)
=sinAcosB-cosAsinB
=sin(A-B)
则原式得证.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询