
设随机变量(X,Y)服从区间(-1,1)上的均匀分布,令Y=|X|,求X和Y的相关系数
1个回答
展开全部
1)先算出:E(X)=E(Y)=0,D(X)=D(Y)=1/3
2)再算:协方差:Cov(X,Y)=E(XY)-E(X)E(Y)=E(X|X|)
=0.5∫(0,-1) (-x²)dx+0.5∫(1,0) (x²)dx
=-0.5x³/3|(上限0,下限-1)+0.5x³/3|(上限1,下限0)
=0
3)相关系数:r = Cov(X,Y)/[D(X)D(Y)]^0.5 = 0
4)可见:虽然 Y=|X| 有确定的函数关系,但Y、X的相关系数却等于零!
2)再算:协方差:Cov(X,Y)=E(XY)-E(X)E(Y)=E(X|X|)
=0.5∫(0,-1) (-x²)dx+0.5∫(1,0) (x²)dx
=-0.5x³/3|(上限0,下限-1)+0.5x³/3|(上限1,下限0)
=0
3)相关系数:r = Cov(X,Y)/[D(X)D(Y)]^0.5 = 0
4)可见:虽然 Y=|X| 有确定的函数关系,但Y、X的相关系数却等于零!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询