谁有绝对值不等式问题的解法?
展开全部
解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值的符号。而去掉绝对值符号的基本方法有二:
其一为平方,其二为讨论。所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
所谓讨论,即x≥0时,|x|=x
;x<0时,|x|=-x,绝对值符号也没有了!以下,具体说说绝对值不等式的解法。首先说“平方法”。不等式两边可不可以同时平方呢?一般来说,有点问题。比如5>3,平方后,5^2>3^2,但1>-2,平方后,1^2<(-2)^2。
***事实上,本质原因在于函数y=x^2在r上不单调。但我们知道,y=x^2在r+上是单调递增的,因此不等式两边都是非负时,同时平方,不等号的方向不变,这是可以的。这里说到的***单调性的问题,是高一数学的重点内容,现在不明白可以跳过,到时候可一定要用心听!
有初中数学的基础,也应该明白,对两个非负数来说,大的那个数,它的平方也相应会大一些;反过来,平方大一些的数,这个数本来也会大一些。比如|2x-1|≥1,两边同时平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
其一为平方,其二为讨论。所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
所谓讨论,即x≥0时,|x|=x
;x<0时,|x|=-x,绝对值符号也没有了!以下,具体说说绝对值不等式的解法。首先说“平方法”。不等式两边可不可以同时平方呢?一般来说,有点问题。比如5>3,平方后,5^2>3^2,但1>-2,平方后,1^2<(-2)^2。
***事实上,本质原因在于函数y=x^2在r上不单调。但我们知道,y=x^2在r+上是单调递增的,因此不等式两边都是非负时,同时平方,不等号的方向不变,这是可以的。这里说到的***单调性的问题,是高一数学的重点内容,现在不明白可以跳过,到时候可一定要用心听!
有初中数学的基础,也应该明白,对两个非负数来说,大的那个数,它的平方也相应会大一些;反过来,平方大一些的数,这个数本来也会大一些。比如|2x-1|≥1,两边同时平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
展开全部
解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值的符号。而去掉绝对值符号的基本方法有二:
其一为平方,其二为讨论。所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
所谓讨论,即x≥0时,|x|=x
;x<0时,|x|=-x,绝对值符号也没有了!以下,具体说说绝对值不等式的解法。首先说“平方法”。不等式两边可不可以同时平方呢?一般来说,有点问题。比如5>3,平方后,5^2>3^2,但1>-2,平方后,1^2<(-2)^2。
***事实上,本质原因在于函数y=x^2在R上不单调。但我们知道,y=x^2在R+上是单调递增的,因此不等式两边都是非负时,同时平方,不等号的方向不变,这是可以的。这里说到的***单调性的问题,是高一数学的重点内容,现在不明白可以跳过,到时候可一定要用心听!
有初中数学的基础,也应该明白,对两个非负数来说,大的那个数,它的平方也相应会大一些;反过来,平方大一些的数,这个数本来也会大一些。比如|2x-1|≥1,两边同时平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
其一为平方,其二为讨论。所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
所谓讨论,即x≥0时,|x|=x
;x<0时,|x|=-x,绝对值符号也没有了!以下,具体说说绝对值不等式的解法。首先说“平方法”。不等式两边可不可以同时平方呢?一般来说,有点问题。比如5>3,平方后,5^2>3^2,但1>-2,平方后,1^2<(-2)^2。
***事实上,本质原因在于函数y=x^2在R上不单调。但我们知道,y=x^2在R+上是单调递增的,因此不等式两边都是非负时,同时平方,不等号的方向不变,这是可以的。这里说到的***单调性的问题,是高一数学的重点内容,现在不明白可以跳过,到时候可一定要用心听!
有初中数学的基础,也应该明白,对两个非负数来说,大的那个数,它的平方也相应会大一些;反过来,平方大一些的数,这个数本来也会大一些。比如|2x-1|≥1,两边同时平方,可得(2x-1)^2≥1,整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询