解分式方程(x+2/x+1)-(x+4/x+3)=(x+6/x+5)-(x+8/x+7)
这一步看不懂1+1/(x+1)-[1+1/(x+3)]=1+1/(x+5)-[1+1/(x+7)]...
这一步看不懂1+1/(x+1)-[1+1/(x+3)]=1+1/(x+5)-[1+1/(x+7)]
展开
4个回答
2012-08-11
展开全部
(x+2)/(x+1)=(x+1)/(x+1)+1/(x+1)=1+1/(x+1)
同理:(x+4)/(x+3)=1+1/(x+3)
(x+6)/(x+5)=1+1/(x+5)
(x+8)/(x+7)=1+1/(x+7)
(x+2/x+1)-(x+4/x+3)=(x+6/x+5)-(x+8/x+7)
1+1/(x+1)-[1+1/(x+3)]=1+1/(x+5)-[1+1/(x+7)]
方程可整理为:
(x+1)(x+3)=(x+5)(x+7) 且(x不等于-1,-3,-5,-7)
x²+4x+3=x²+12x+35
4x-12x=35-3
-8x=32
x=-4
同理:(x+4)/(x+3)=1+1/(x+3)
(x+6)/(x+5)=1+1/(x+5)
(x+8)/(x+7)=1+1/(x+7)
(x+2/x+1)-(x+4/x+3)=(x+6/x+5)-(x+8/x+7)
1+1/(x+1)-[1+1/(x+3)]=1+1/(x+5)-[1+1/(x+7)]
方程可整理为:
(x+1)(x+3)=(x+5)(x+7) 且(x不等于-1,-3,-5,-7)
x²+4x+3=x²+12x+35
4x-12x=35-3
-8x=32
x=-4
展开全部
方程所得集合为:{X|X ∈ R 且 X ≠ 0} , R为一切实数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
[(x+1)+1]/(x+1)-[(x+3)+1]/(x+3)=[(x+5)+1]/(x+5)-[(x+7)+1]/(x+7)
(x+1)/(x+1)+1/(x+1)-(x+3)/(x+3)-1/(x+3)=(x+5)/(x+5)+1/(x+5)-(x+7)/(x+7)-1/(x+7)
1+1/(x+1)-1-1/(x+3)=1+1/(x+5)-1-1/(x+7)
1/(x+1)-1/(x+3)=1/(x+5)-1/(x+7)
[(x+3)-(x+1)]/[(x+1)(x+3)]=[(x+7)-(x+5)]/[(x+5)(x+7)]
2/[(x+1)(x+3)]=2/[(x+5)(x+7)]
(x+1)(x+3)=(x+5)(x+7)
x²+4x+3=x²+12x+35
4x-12x=35-3
-8x=32
x=-4
经检验x=-4是原方程的根
[(x+1)+1]/(x+1)-[(x+3)+1]/(x+3)=[(x+5)+1]/(x+5)-[(x+7)+1]/(x+7)
(x+1)/(x+1)+1/(x+1)-(x+3)/(x+3)-1/(x+3)=(x+5)/(x+5)+1/(x+5)-(x+7)/(x+7)-1/(x+7)
1+1/(x+1)-1-1/(x+3)=1+1/(x+5)-1-1/(x+7)
1/(x+1)-1/(x+3)=1/(x+5)-1/(x+7)
[(x+3)-(x+1)]/[(x+1)(x+3)]=[(x+7)-(x+5)]/[(x+5)(x+7)]
2/[(x+1)(x+3)]=2/[(x+5)(x+7)]
(x+1)(x+3)=(x+5)(x+7)
x²+4x+3=x²+12x+35
4x-12x=35-3
-8x=32
x=-4
经检验x=-4是原方程的根
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |