设函数f(x)=2cos^2x+2根号3sinx*cosx,求f(x)的最小正周期以及单调增区间
展开全部
解:f(x)=2cos²x+2√3sinxcosx
=(2cos²x-1)+1+√3×2sinxcosx
=cos2x+√3sin2x+1
=2sin(2x+π/6)+1
函数f(x)最小正周期T=2π/2=π
由2kπ≤2x+π/6≤2kπ+π/2 (k∈z),得
kπ-π/12≤x≤kπ+π/6
或 由2kπ+3π/2≤2x+π/6≤2kπ+2π(k∈z),得
kπ+2π/3≤x≤kπ+11π/12
因此,f(x)的单独递增区间为[kπ-π/12,kπ+π/6]或[kπ+2π/3,kπ+11π/12] (k∈z)
=(2cos²x-1)+1+√3×2sinxcosx
=cos2x+√3sin2x+1
=2sin(2x+π/6)+1
函数f(x)最小正周期T=2π/2=π
由2kπ≤2x+π/6≤2kπ+π/2 (k∈z),得
kπ-π/12≤x≤kπ+π/6
或 由2kπ+3π/2≤2x+π/6≤2kπ+2π(k∈z),得
kπ+2π/3≤x≤kπ+11π/12
因此,f(x)的单独递增区间为[kπ-π/12,kπ+π/6]或[kπ+2π/3,kπ+11π/12] (k∈z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询