设a,b∈R,求证:a²+b²+ab+1>a+b
1个回答
展开全部
解法一:要证上式,只需证:
2(a2+b2+ab+1)>2(a+b)
移项得(a+b)2+(a-1)2+(b-1)2>0在a∈R,b∈R时恒成立.
解法二:要证上式,只需证:
a2+(b-1)a+b2-b+1>0
∵△=(b-1)2-4(b2-b+1)=-3b2+2b-3
∵△'=4-36=-32
2(a2+b2+ab+1)>2(a+b)
移项得(a+b)2+(a-1)2+(b-1)2>0在a∈R,b∈R时恒成立.
解法二:要证上式,只需证:
a2+(b-1)a+b2-b+1>0
∵△=(b-1)2-4(b2-b+1)=-3b2+2b-3
∵△'=4-36=-32
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测东莞有限公司
2024-12-25 广告
2024-12-25 广告
作为富港检测技术(东莞)有限公司的工作人员,关于ISTA 1A、2A及3A的区别及测试项目简述如下:ISTA 1A是非模拟集中性能试验,主要进行固定位移振动和冲击测试,针对不超过68kg的包装件。ISTA 2A则在此基础上增加了部分模拟性能...
点击进入详情页
本回答由富港检测东莞有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询