已知sinθ+cosθ=√2/3(π/2<θ<π)求tanθ-cotθ的值
1个回答
展开全部
解:
sinθ+cosθ=√2/3
(sinθ+cosθ)^2=2/9
(sinθ)^2+(cosθ)^2+2sinθcosθ=2/9
sinθcosθ=2/9-1=-7/9
(sinθ-cosθ)^2=(sinθ)^2+(cosθ)^2-2sinθcosθ=1+7/9=16/9
∵π/2<θ<π
∴sinθ>0,cosθ<0
∴sinθ-cosθ>0,即:
sinθ-cosθ=4/3
而:
tanθ-cotθ=sinθ/cosθ - cosθ/sinθ
=[(sinθ)^2-(cosθ)^2] / (sinθcosθ)
=[(sinθ-cosθ)(sinθ+cosθ)] / (sinθcosθ)
=√2/3×4/3 / (-7/9)
=-4√2/7
sinθ+cosθ=√2/3
(sinθ+cosθ)^2=2/9
(sinθ)^2+(cosθ)^2+2sinθcosθ=2/9
sinθcosθ=2/9-1=-7/9
(sinθ-cosθ)^2=(sinθ)^2+(cosθ)^2-2sinθcosθ=1+7/9=16/9
∵π/2<θ<π
∴sinθ>0,cosθ<0
∴sinθ-cosθ>0,即:
sinθ-cosθ=4/3
而:
tanθ-cotθ=sinθ/cosθ - cosθ/sinθ
=[(sinθ)^2-(cosθ)^2] / (sinθcosθ)
=[(sinθ-cosθ)(sinθ+cosθ)] / (sinθcosθ)
=√2/3×4/3 / (-7/9)
=-4√2/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询