自动控制原理中稳定性的概念,求自控牛人现身

好吧...自动控制原理是一团麻,稳定性神马的一直没有搞清楚先说说我自己的想法:自控里讲的稳定性(经典部分),好像在这几个地方出现过:(1)劳斯判据(2)奈奎斯特判据(3)... 好吧...自动控制原理是一团麻,稳定性神马的一直没有搞清楚
先说说我自己的想法:自控里讲的稳定性(经典部分),好像在这几个地方出现过:(1)劳斯判据(2)奈奎斯特判据(3)根轨迹法(右半平面部分)(4)频域法里面的稳定裕度
我感觉(1)、(2)都是根据“闭环特征方程的右半平面极点”来判断的,那么我的第一个疑问就是:
★1、劳斯、奈奎斯特判据中所谓的不稳定,是否是说对于《任意》的非0输入信号,系统都将最终呈现振荡发散的形式?同时,是否是说,假如闭环传函有右半平面极点,则系统对任意输入信号均发散?★{第一问至此}
根轨迹中也提到了稳定的问题,我感觉其与前者的不同,在于开环传函拥有可变参数。同时根轨迹也指的是闭环传函极点,原理上和前者一致。至于奈氏判据,原理上依然建立在闭环极点的基础上,我感觉是在系统传函未知的情况下,使用测试法,即给系统加各种各样频率的输入,以测试结果绘出奈氏曲线,再进行判断。即:奈氏曲线的稳定性判断可以用于系统传函未知的情形。这里的稳定性同样也指“对任意输入信号的响应”。但是我不敢肯定是不是这样:
★2、以上关于根轨迹稳定性、奈氏判据的理解是否正确?★(第二问至此)
最让我理解不了的是频域法里面的稳定裕度,一个是相位裕量,在L(omg)=0dB算得,一个是增益裕量,在fai=-180°算得。这两个稳定性是什么意思?
★3、是不是说相位裕量小于零,或者增益裕量小于0(亦或是两者“且”的关系?),则系统就对《任意》输入信号都将呈发散的响应?(★第三问至此)
我的理解是,这两个稳定性,是随着omg变化来得,比如说你取一个omg,算出来相位裕量<0了,也就是说这个omg的信号加进来,输出信号作为反馈,正好与输入信号同相叠加了,这样子输出信号就会随着t的增加,愈来愈大,呈发散状。那么这个稳定裕度的概念,是针对具体omg的,也就是说,对于一种omg信号的输入,系统可能是稳定的,但是对另一种omg信号的输入,系统则是不稳定的。但是这种所谓的稳定,在前面几种闭环极点的思维里,能说的通么?如果说对这一块的理解正确,那么系统的稳定与否,不仅取决于系统本身的固有特性(闭环极点),同时也取决于输入信号(omg)?
★4、频域法里稳定裕度的概念,是针对输入信号频率omg的,还是针对系统闭环极点的?如果是针对前者的,这种稳定性是否仅对固定频率输入信号有意义,而比如说阶跃等输入,则是无意义的呢?

完了全乱了,特别是稳定裕度那块。。。要是有更好的理解,恳请指教一下。。。
要考试的啊,还是得面对公式,哎~
我后来又想想,裕度的概念在奈氏图里还是针对(-1,0)点的,即本质上是针对最小相位系统的特殊化的奈氏判据.
也就是说,最小相位系统,裕度不符要求,则也是闭环传函有不稳定极点.
如果这样的话就差不多理清了,唯一不懂的一点是,★所谓系统不稳定,是对于任意信号的么?只要系统加了任意微弱的输入,或者初始状态不为零,那么输出就会发散,是这样的么?★
展开
 我来答
goode2008
2012-08-20 · TA获得超过471个赞
知道小有建树答主
回答量:175
采纳率:0%
帮助的人:210万
展开全部
首先讲讲稳定:对与经典的传递函数描述的系统,一般我们讲的稳定指的是BIBO稳定,即有界输入有界输出稳定。即一个系统如果对任意有界输入得到有界输出,它就是BIBO稳定的。当然还有很多其他的稳定概念,比如李亚普诺夫稳定、一致稳定、渐进稳定、指数稳定,等等。但是无论如何定义的稳定,都是系统本身的特性,与特定的输入信号是无关的。下面是对你的问题的讨论:
1 劳斯、奈奎斯特判据判据都是应用于传递函数的,也就是用来判断BIBO稳定的,但是BIBO稳定的定义是要求对任何“有界”输入得到“有界”输出,只要满足这个条件,就定义为BIBO稳定,也就是传递函数稳定。当然,对与“无界”的输入,也可能得到有界输出,至于不稳定么,只要存在“有界”输入使系统输出“无界”,那这个系统就是不稳定。
2 你的理解我不好说,我只说说我的理解:根轨迹是系统“特征根”的轨迹,本来是不涉及稳定的。只有讨论根在平面上位置的时候才涉及到稳定的问题。至于你关于奈氏判据的理解,是方法问题,如果你能证明这种方法同BIBO稳定的定义等价,那这个系统就是BIBO稳定,如果同其他稳定定义等价,则系统是那种稳定的。
3 稳定裕度么,基本就是你理解的那个意思:由于系统前向通道会改变输入信号的相位,反馈时就有可能发散。但是注意这是直观理解,有一些问题在里面的。
4 稳定裕度是针对频率的,因为不同的频率对应着不同的相位。另外,我觉得稳定裕度不等同于稳定性,它是对系统是否可以加入反馈的一种评估,如果稳定裕度较小,则给系统加反馈就得小心了,当然如果是闭环系统前向通道的稳定裕度,则就表征闭环系统的稳定了。
5 最小相位系统,是所有的零点和极点都在左半平面,最小相位更多地是和零点的位置相关,但零点位置不会影响系统的稳定性(排除零极相消的情况)。
6 对与你“唯一不懂的一点”,就是系统稳定的定义。我在最前面已经说了。
航天希尔
2024-08-11 广告
振动测试实验系统是我司核心技术产品之一,该系统集成了高精度传感器、智能控制单元与先进数据分析软件,能够模拟各种复杂环境下的振动条件,对航空航天器、汽车部件、电子设备等产品进行全面而精确的振动测试。通过该系统,客户可评估产品在长期振动下的耐久... 点击进入详情页
本回答由航天希尔提供
球霸之神
2012-08-13 · TA获得超过3375个赞
知道大有可为答主
回答量:4606
采纳率:61%
帮助的人:1087万
展开全部
其实好多理论的东西到现实中就是扯淡了,就说稳定性,你看着公式一大堆,到现实中如果是以电压为信号的,就是电压波动不大即稳定,我说的可能也很扯淡,但是上学学的也是很扯淡,好多都用不上,尤其是让你做技术员好听点事电气工程师,好多知识都是经验,学习的那些东西很有限
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-08-13
展开全部
简单的说就是你的输出不能够无限的放大,当无限放大的时候就是不稳定现象 当输出衰减至某个固定值(直流或交流都可以)即为稳定 当输出出现等幅震荡即为临界稳定
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式