2个回答
展开全部
解:∵a=2bsinA,∴a/sinA=2b
又sinB=b/(a/sinA)=b/2b=1/2,∴B=30°.
cosA+sinC=cos[180°-(B+C)]+sinC=cos(150°-c)+sinc
=cos[90°+(60°-c)]+sinC
=-sin(60°-c)+sinC
=-(sin60°cosc-cos60°sinc)+sinc
=-(√3/2)cosc+(3/2)sinC
=(3/2)[sinC-(√3/3)cosC]
=(3/2)[sinC-tan30°cosc]
=(3/2)(1/cos30°)(sinccos30°-coscsin30°)
=(√3)sin(c-30°)
∵△ABC是锐角三角形,∴0°<C<90°,故-30°<C-30°<60°
∴-1/2<sin(C-30°)<√3/2
∴-√3/2<cosA+sinC<3/2.
又sinB=b/(a/sinA)=b/2b=1/2,∴B=30°.
cosA+sinC=cos[180°-(B+C)]+sinC=cos(150°-c)+sinc
=cos[90°+(60°-c)]+sinC
=-sin(60°-c)+sinC
=-(sin60°cosc-cos60°sinc)+sinc
=-(√3/2)cosc+(3/2)sinC
=(3/2)[sinC-(√3/3)cosC]
=(3/2)[sinC-tan30°cosc]
=(3/2)(1/cos30°)(sinccos30°-coscsin30°)
=(√3)sin(c-30°)
∵△ABC是锐角三角形,∴0°<C<90°,故-30°<C-30°<60°
∴-1/2<sin(C-30°)<√3/2
∴-√3/2<cosA+sinC<3/2.
参考资料: yahoo
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询