已知a,b,c∈R,且a+b+c=1,求证1/a+1/b+1/c≥9
1个回答
展开全部
∵a+b+c=1, a,b,c∈R+(否则不对)
∴1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(b/a+a/b)+(b/c+c/b)+(c/a+a/c)
∵a/b+b/a≥2√(a/b*b/a)=2
(当a/b=b/a,a=b时,取等号)
同理:b/c+c/b≥2,a/c+c/a≥2
∴(b/a+a/b)+(b/c+c/b)+(c/a+a/c)≥6
∴3+(b/a+a/b)+(b/c+c/b)+(c/a+a/c)≥9
即1/a+1/b+1/c≥9
∴1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(b/a+a/b)+(b/c+c/b)+(c/a+a/c)
∵a/b+b/a≥2√(a/b*b/a)=2
(当a/b=b/a,a=b时,取等号)
同理:b/c+c/b≥2,a/c+c/a≥2
∴(b/a+a/b)+(b/c+c/b)+(c/a+a/c)≥6
∴3+(b/a+a/b)+(b/c+c/b)+(c/a+a/c)≥9
即1/a+1/b+1/c≥9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询