设a 为实数,函数f(x) = x^2 + |x-a| + 1, x属于R. 1)讨论函数f(x)的奇偶性; 2)求函数f(x)的最小值
1个回答
展开全部
解
(1)
1`当a=0时,函数f(-x)=(-x)2 +|-x|+1=f(x)
所以f(x)为偶函数
2`当a不等于0
f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)不等于f(-a),f(-a)不等于-f(a)
此时函数f(x)既不是奇函数也不是偶函数
(2)
①`当x小于等于a,函数f(x)=x2-x+a+1=(x-1/2)2+a+3/4
若a小于等于1/2,则函数在(-∞,a]上单调递减,从而,函数在(-∞,a]世且f(x)小于等于f(a)的最小值为f(a)=a2+1
若a大于1/2,则y在(-∞,a]的最小值是f(1/2)=a+3/4
②当x大于等于a,f(x)=x2+2x-a+1=(x+1/2)2+a+3/4
所以
a小于等于-1/2,则函数在[a,+∞)最小值为f(-1/2)=3/4-a
若a大于1/2,则在[a,+∞)单调递减,在[a,+∞)的最小值为f(a)=a2+1
所以①②知,当a小于等于-1/2最小值为3/4-a
当-1/2小于a小于等于1/2,最小值为a2+1
a大于1/2,最小值为a+3/4
(1)
1`当a=0时,函数f(-x)=(-x)2 +|-x|+1=f(x)
所以f(x)为偶函数
2`当a不等于0
f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)不等于f(-a),f(-a)不等于-f(a)
此时函数f(x)既不是奇函数也不是偶函数
(2)
①`当x小于等于a,函数f(x)=x2-x+a+1=(x-1/2)2+a+3/4
若a小于等于1/2,则函数在(-∞,a]上单调递减,从而,函数在(-∞,a]世且f(x)小于等于f(a)的最小值为f(a)=a2+1
若a大于1/2,则y在(-∞,a]的最小值是f(1/2)=a+3/4
②当x大于等于a,f(x)=x2+2x-a+1=(x+1/2)2+a+3/4
所以
a小于等于-1/2,则函数在[a,+∞)最小值为f(-1/2)=3/4-a
若a大于1/2,则在[a,+∞)单调递减,在[a,+∞)的最小值为f(a)=a2+1
所以①②知,当a小于等于-1/2最小值为3/4-a
当-1/2小于a小于等于1/2,最小值为a2+1
a大于1/2,最小值为a+3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询