n阶方阵A与对角矩阵相似的充分必要条件是A有?
1个回答
展开全部
n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量!
[证明] 充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXi i=1,2,……,n
A[X1 X2 ……Xn]=[入1X1 入2X2 ……入nXn]
=[X1 X2 ……Xn]*
X1,X2,Xn线性无关,故P=[X1 X2 Xn]为满秩矩阵,令V=*,则有AP=PV
V=AP/P
必要性:已知存在可逆方阵P,使
AP/P=V=*
将P写成列向量P=[P1 P2 Pn] Pn为n维列向量
[AP1 AP2……APn]=[入1P1 入2P2……入nPn]
可见,入i为A的特征值,Pi为A的特征向量,
所以,A具有n个线性无关的特征向量.
注:因为上面的过程是我自己手工打上去的,好多符号百度都打不出来,将就能看懂就好,其中*表示的是一个n阶对角矩阵,对角线上的矢量分别为入1,入2……入n
n阶矩阵在复数范围内,一定有n个特征值(重特征值按重数计算个数),从这个意义上说,矩阵的特征值个数与矩阵的阶数是有关系的.n阶矩阵在实数范围内有多少个特征值就不一定了.
但是有一个重要的结论需要知道:n阶实对称矩阵一定有n个实特征值(重特征值按重数计算个数).
[证明] 充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXi i=1,2,……,n
A[X1 X2 ……Xn]=[入1X1 入2X2 ……入nXn]
=[X1 X2 ……Xn]*
X1,X2,Xn线性无关,故P=[X1 X2 Xn]为满秩矩阵,令V=*,则有AP=PV
V=AP/P
必要性:已知存在可逆方阵P,使
AP/P=V=*
将P写成列向量P=[P1 P2 Pn] Pn为n维列向量
[AP1 AP2……APn]=[入1P1 入2P2……入nPn]
可见,入i为A的特征值,Pi为A的特征向量,
所以,A具有n个线性无关的特征向量.
注:因为上面的过程是我自己手工打上去的,好多符号百度都打不出来,将就能看懂就好,其中*表示的是一个n阶对角矩阵,对角线上的矢量分别为入1,入2……入n
n阶矩阵在复数范围内,一定有n个特征值(重特征值按重数计算个数),从这个意义上说,矩阵的特征值个数与矩阵的阶数是有关系的.n阶矩阵在实数范围内有多少个特征值就不一定了.
但是有一个重要的结论需要知道:n阶实对称矩阵一定有n个实特征值(重特征值按重数计算个数).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询