如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、C分别在y轴和x轴上。 5
且点A点C的坐标分别为A(0,2)C(5,0)1、如图24,求点B的坐标(这题我已算出,答案是(-2,-3))2、如图25,点p是第一、三想先的平分线PQ上的一动点,是否...
且点A点C的坐标分别为A(0,2)C(5,0)
1、如图24,求点B的坐标(这题我已算出,答案是(-2,-3))
2、如图25,点p是第一、三想先的平分线PQ上的一动点,是否存在点P,使得△PAC的面积是12,若存在,求出P的坐标,若不存在,说明理由
3、如图26,BF在△ABC内部且过B点的任意一条射线,分别过A做AM⊥BF于M点,过C作NC⊥BF于N点,写出BN—NC与AM之间的数量关系,并证明你的结论 展开
1、如图24,求点B的坐标(这题我已算出,答案是(-2,-3))
2、如图25,点p是第一、三想先的平分线PQ上的一动点,是否存在点P,使得△PAC的面积是12,若存在,求出P的坐标,若不存在,说明理由
3、如图26,BF在△ABC内部且过B点的任意一条射线,分别过A做AM⊥BF于M点,过C作NC⊥BF于N点,写出BN—NC与AM之间的数量关系,并证明你的结论 展开
2个回答
展开全部
(1)解:作BD垂直Y轴于D.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC
.所以⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.
即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S△PAC=S△POA+S△POC-S△AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n),
因为S△AOC=AO·CO/2=2·5/2=5<12
所以P在第三象限
⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,
得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.
故△AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,
即BN-BH=2AM, BN-NC=2AM.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC
.所以⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.
即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S△PAC=S△POA+S△POC-S△AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n),
因为S△AOC=AO·CO/2=2·5/2=5<12
所以P在第三象限
⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,
得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.
故△AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,
即BN-BH=2AM, BN-NC=2AM.
追问
H在哪
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询