f(x)=(X-1)e^X,若任意x>;1,都有f(X)>=x+m+ln(X-1)成立,求m取值范围
1个回答
展开全部
g(x)
=
f(x)
-
[
x
+
ln(x-1)
]
= xe^x
-
e^x
-
x
-
ln(x-1);
g'(x)
= xe^x
-
1
-
1/(x-1)
=
0,
xe^x
=
1
+
1/(x-1)
=
x/(x-1),e^x
=
1/(x-1),x
=
-ln(x-1);
g[-ln(x-1)]
=
-ln(x-1)/(x-1)
-
1/(x-1)
=
[
1
+
ln(x-1)
]/(1-x)
=
[
1
+
ln(x-1)
]/[
1
+
ln(x-1)
]
=
1,即
g(x) 最小值为
1;
故
1
-
m
>
0,m
<
1;m 的取值范围是 m
<
1
。
=
f(x)
-
[
x
+
ln(x-1)
]
= xe^x
-
e^x
-
x
-
ln(x-1);
g'(x)
= xe^x
-
1
-
1/(x-1)
=
0,
xe^x
=
1
+
1/(x-1)
=
x/(x-1),e^x
=
1/(x-1),x
=
-ln(x-1);
g[-ln(x-1)]
=
-ln(x-1)/(x-1)
-
1/(x-1)
=
[
1
+
ln(x-1)
]/(1-x)
=
[
1
+
ln(x-1)
]/[
1
+
ln(x-1)
]
=
1,即
g(x) 最小值为
1;
故
1
-
m
>
0,m
<
1;m 的取值范围是 m
<
1
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询