已知:梯形ABCD中,AD//BC,∠B=90°,AD=AB=4,BC=7,点E在BC边上,将△CDE沿DE折叠,
1个回答
展开全部
(1)过点D作DF⊥BC于F.
∵AD∥BC,∠B=90°,AD=AB,
∴四边形ABFD是正方形.
∴DF=BF=AB=4,FC=3,
在Rt△DFC中,CD=5 ,
∴C′D=5,
∵AD=FD,∠A=∠DFC=90°,C′D=CD,
∴△AC′D≌△FCD,
∴∠ADC′=∠FDC,AC′=FC=3,
∴∠ADF=∠ADC′+∠C′DF=∠FDC+∠C′DF=∠C′DC=90°,
∵∠C′DE=∠CDE,
∴∠C′DE=45°;
(2)设EC=x,则BE=7-x,C′E=x,
∵AC′=3,
∴BC'=1,
在Rt△BEC′中(7-x)2+1=x2
解方程,得:X=25/7 ,
∴ S△C'DE=S△CDE =1/2EC*DF=50/7
∵AD∥BC,∠B=90°,AD=AB,
∴四边形ABFD是正方形.
∴DF=BF=AB=4,FC=3,
在Rt△DFC中,CD=5 ,
∴C′D=5,
∵AD=FD,∠A=∠DFC=90°,C′D=CD,
∴△AC′D≌△FCD,
∴∠ADC′=∠FDC,AC′=FC=3,
∴∠ADF=∠ADC′+∠C′DF=∠FDC+∠C′DF=∠C′DC=90°,
∵∠C′DE=∠CDE,
∴∠C′DE=45°;
(2)设EC=x,则BE=7-x,C′E=x,
∵AC′=3,
∴BC'=1,
在Rt△BEC′中(7-x)2+1=x2
解方程,得:X=25/7 ,
∴ S△C'DE=S△CDE =1/2EC*DF=50/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询