已知a向量,b向量是平面内两个相互垂直的单位向量,若c向量满足(a-c)(b-c)=0 则|c|的取值范围是多少呢?
展开全部
由题意得:a·b=0
(a-c)(b-c)=0
a·b-a·c-b·c+c^2=0
c^2-ac-bc=0
|c|^2-|a||c|cosA-|b||c|cos(π/2-A)=0
|c|^2-|a||c|cosA-|b||c|sinA=0
|c|(|c|-|a|cosA-|b|sinA)=0
|c|=0(舍),
|c|=|a|cosA+|b|sinA
=cosA+sinA
=√2sin(A+π/4)
因为0<A<π/2,
π/4<A+π/4<3π/4,
√2/2<sin(A+π/4) ≤1,
所以1<√2sin(A+π/4) ≤√2
即|c|的取值范围是(1, √2].
(a-c)(b-c)=0
a·b-a·c-b·c+c^2=0
c^2-ac-bc=0
|c|^2-|a||c|cosA-|b||c|cos(π/2-A)=0
|c|^2-|a||c|cosA-|b||c|sinA=0
|c|(|c|-|a|cosA-|b|sinA)=0
|c|=0(舍),
|c|=|a|cosA+|b|sinA
=cosA+sinA
=√2sin(A+π/4)
因为0<A<π/2,
π/4<A+π/4<3π/4,
√2/2<sin(A+π/4) ≤1,
所以1<√2sin(A+π/4) ≤√2
即|c|的取值范围是(1, √2].
追问
|c|^2-|a||c|cosA-|b||c|cos(π/2-A)=0 看不懂.角度是怎么来的?
追答
设向量a与向量c的夹角为A,因为向量a与b垂直,所以向量b与向量c的夹角为π/2-A,
∴a·c=|a||c|cosA,
b·c=|b||c|cos(π/2-A).
由c^2-ac-bc=0可得:|c|^2-|a||c|cosA-|b||c|cos(π/2-A)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询