已知数列{a}的前n项和为Sn,且Sn=2n*n+n,n∈N,数列{bn}满足An=4log2bn+3. 1.求An,bn 5
展开全部
(1)当n = 1时,A1=S1 = 3,当n >= 2时,An = Sn-Sn-1 = 2n*n+n -2(n-1)*(n-1)-(n-1) = 4n - 1,又因为A1= 3满足,所以 An = 4n - 1,所以Bn = 2^(n-1)
(2) An* Bn = (4n-1)*2^(n-1)
Tn = 3*2^0 + 7*2^1 + 11*2^2+。。。+(4n-1)*2^(n-1)
2Tn = 3*2^1 + 7*2^2 + 11*2^3+。。。+(4n-1)*2^(n)
所以Tn = 3*2^0 - 4*2^1 - 4*2^2-。。。-(4n-1)*2^(n-1)+(4n-1)*2^(n)
再用等比数列公式求和即可
(2) An* Bn = (4n-1)*2^(n-1)
Tn = 3*2^0 + 7*2^1 + 11*2^2+。。。+(4n-1)*2^(n-1)
2Tn = 3*2^1 + 7*2^2 + 11*2^3+。。。+(4n-1)*2^(n)
所以Tn = 3*2^0 - 4*2^1 - 4*2^2-。。。-(4n-1)*2^(n-1)+(4n-1)*2^(n)
再用等比数列公式求和即可
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询