已知函数f(x)=ax^2+bx+1(a,b为实数),x∈R,F(x)={f(x)(x>0)或-f(x)(x<0)}
(1)若f(-1)=0且函数f(x)的值域为[0,+∞),求F(x)的表达式(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数kx的...
(1)若f(-1)=0且函数f(x)的值域为[0,+∞),求F(x)的表达式
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数kx的取值范围
(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)能否大于零 展开
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数kx的取值范围
(3)设mn<0,m+n>0,a>0,且f(x)为偶函数,判断F(m)+F(n)能否大于零 展开
展开全部
(1)根据题目条件:
知道二次函数的开口向上,且顶点坐标是(-1,0)
即两根之积为 1/a=1 所以 a=1 ,-b/a=-2 b=2
f(x)=x^2+2x+1
F(x)=x^2+2x+1 x>0
F(x)=-(x^2+2x+1) x<0
(2)当x属于[-2,2],g(x)=f(x)-kx=x^2+(2-k)x+1 是增函数,必须对称轴是在区间以左, 即
(k-2)/2 =<-2 k<=-2
若是减函数 需要 对称轴在区间以右 ,(k-2)/2>=2 k>=6
综上 k<=-2 或 k>=6
(3)f(x)是偶函数,则必然有b=0
f(x)=ax^2+1
根据条件 mn<0,m+n>0 ,知道 m n异号
不妨设 m是正数,n是负数
因为f(x)是偶函数,可以得知f(-x)=f(x)
F(n)=-f(n)=-f(-n)
因为a>0 且函数对称轴是x=0
F(m)+F(n)=f(m)-f(-n)
由于 m+n>0 所以 m>-n>0
而f(m)在大于0区间是增函数,所以 f(m)-f(-n)>0
即F(m)+F(n)>0
知道二次函数的开口向上,且顶点坐标是(-1,0)
即两根之积为 1/a=1 所以 a=1 ,-b/a=-2 b=2
f(x)=x^2+2x+1
F(x)=x^2+2x+1 x>0
F(x)=-(x^2+2x+1) x<0
(2)当x属于[-2,2],g(x)=f(x)-kx=x^2+(2-k)x+1 是增函数,必须对称轴是在区间以左, 即
(k-2)/2 =<-2 k<=-2
若是减函数 需要 对称轴在区间以右 ,(k-2)/2>=2 k>=6
综上 k<=-2 或 k>=6
(3)f(x)是偶函数,则必然有b=0
f(x)=ax^2+1
根据条件 mn<0,m+n>0 ,知道 m n异号
不妨设 m是正数,n是负数
因为f(x)是偶函数,可以得知f(-x)=f(x)
F(n)=-f(n)=-f(-n)
因为a>0 且函数对称轴是x=0
F(m)+F(n)=f(m)-f(-n)
由于 m+n>0 所以 m>-n>0
而f(m)在大于0区间是增函数,所以 f(m)-f(-n)>0
即F(m)+F(n)>0
参考资料: http://zhidao.baidu.com/question/109175906.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询