如何求函数的泰勒展开式?
1个回答
展开全部
综述:先做变换:[sin(x)]^2=0.5[1-cos(2x)],再用公式:sin(x)^2=1/2+x^2-1/3 x^4+2/45 x^6-1/315 x^8。
在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。
泰勒级数的重要性体现在以下三个方面:
幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。
泰勒级数可以用来近似计算函数的值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询