三角函数求值:
(1)sin6°sin42°sin66°sin78°;(2)sin^2(20°)+cos^2(50°)+sin20°cos50°...
(1)sin6°sin42°sin66°sin78°;
(2)sin^2(20°)+cos^2(50°)+sin20°cos50° 展开
(2)sin^2(20°)+cos^2(50°)+sin20°cos50° 展开
展开全部
(sin6°sin42°sin66°sin78°cos6)/cos6
=sin12 sin42°sin66°sin78/2cos6
sin78=cos12
=sin24 sin42°sin66/4cos6
sin66=cos24
=sin48 sin42/8cos6
sin42=cos48
=sin96/16cos6
=1/16
2 sinA sinB = cos(A-B) - cos(A+B)
sin^2(20°)+cos^2(50°)+sin20°cos50°
=sin^2(20°)+sin^2(40°)+sin20sin40
=(1-cos40)/2+(1-cos80)/2+[cos(20) - cos(60) ]/2
=1-(cos40+cos80-cos20+cos60)
=1-(2cos60cos20-cos20+cos60)
=1/2
=sin12 sin42°sin66°sin78/2cos6
sin78=cos12
=sin24 sin42°sin66/4cos6
sin66=cos24
=sin48 sin42/8cos6
sin42=cos48
=sin96/16cos6
=1/16
2 sinA sinB = cos(A-B) - cos(A+B)
sin^2(20°)+cos^2(50°)+sin20°cos50°
=sin^2(20°)+sin^2(40°)+sin20sin40
=(1-cos40)/2+(1-cos80)/2+[cos(20) - cos(60) ]/2
=1-(cos40+cos80-cos20+cos60)
=1-(2cos60cos20-cos20+cos60)
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询