如何学好解析几何,特别是圆锥曲线?回答得好给分

每次解题都要死算这肯定不行啊,一道题要花我几十分钟,晕!怎么才能比较快捷的解决解析几何的题目呢,特别是双曲线,两眼摸黑!... 每次解题都要死算这肯定不行啊,一道题要花我几十分钟,晕!怎么才能比较快捷的解决解析几何的题目呢,特别是双曲线,两眼摸黑! 展开
 我来答
巨星李小龙
2012-09-04 · TA获得超过5094个赞
知道大有可为答主
回答量:2146
采纳率:50%
帮助的人:1863万
展开全部
以下是我个人总结的一点经验,你可以借鉴一下!
一、圆锥曲线题型的主要特点:一般来说解题思路比较简单,但运算量较为繁琐。因此要想攻破这类题型必须加强以下几个方面的能力:一是掌握解题基本的方法和常用公式;二是提高元算能力和总结一些简便运算的技巧;三是理解和运用主要的几大数学思想(即数形结合思想、函数思想、分类讨论思想、转化思想和整体替换思想);四是掌握一些常用的设点技巧(这是减少元算量的关键)。
二、高考试题中该类题型的分布位置:一般放在第四道大题的位置。它一般分为三个小题:第一小题一般是求点的轨迹(4分);第二和第三小题是其它类型的题(如求定点、定直线、定距离、最值等问题),分别占5分。(设直线的方程是要注意斜率是否存在)
三、圆锥曲线的重点理论知识:(1)求动点轨迹的的基本方法:1、定义法(也称为直接法或几何法):根据圆锥曲线的定义求即可(注意:此法应优先考虑)2、间接法:先设出动点的坐标,在根据已知条件寻找几个等量关系,再化简即可;3、交轨法:转化为其它曲线的交点轨迹;4、参数法:先用参数表示动点坐标的表达式,再消去参数即可。(2)椭圆的第二定义:若一动点到定点的距离与到定直线的距离的比小于1,则该动点的轨迹为椭圆。(该比值其实就是离心率,该定点为焦点,该直线为准线)(双曲线的第二定义与此类似,只需把比值改为大于1即可)(3)椭圆的焦半径公式:AF1=a-ex,AF2=a+ex;椭圆的焦三角形的面积公式:SpF1F2=b^2*tan@/2;双曲线的焦半径公式:AF1=ex-a,AF2=ex+a;双曲线的焦三角形的面积公式:SPF1F2=b^2/tan@/2。(其中A为椭圆或双曲线上的点,x为A点的横坐标,e为离心率,@为F1pF2的角度)(4)若过抛物线y^2=2px的焦点的直线与抛物线交于A和B两点,设A(x1,y1).B(x2,y2),则有x1*x2=p^2/4,y1*y2=-p^2。(以上的结论最好自行推导一下)(5)当椭圆的焦三角形pF1F2的顶点p与短轴的端点重合时,角F1pF2的角度最大。(6)解圆锥曲线问题时常用的几个重要公式(务必要理解并牢记它,这是不会做这类题也可以拿到分的关键):1、韦达定理:x1+x2=-b/a,x1*x2=c/a
2、弦长公式:d=(1+k^2)*((x1+x2)^2-4x1x2)的值的算术平方根
3、中点弦公式(其作用主要是建立中点的坐标与直线斜率的关系):1、直线与椭圆(x^2/a^2+y^2/b^2=1)相交则k=(y1-y2)/(x1-x2)=-b^2*x0/(a^2*y0)
2、直线与双曲线(x^2/a^2-y^2/b^2=1)相交则k=b^2*x0/(a^2*y0) 3、直线与抛物线(y^2=2px)相交则k=p/y0
(其中A(x1,y1)和B(x2,y2)为两曲线的交点,而(x0,y0)为A和B的中点,k为直线的斜率) 圆锥曲线的题型大致可以分为以下几类:1、定点问题
2、定直线问题 3、最大最小值问题 4、定长或定距离问题 5、参数范围问题 6、与向量相结合的题型
(至于这几种题型的具体解题方法先让你自己通过练习大量的题来进行归纳总结,暂时不直接给出给你,因为只有通过你自己的思考再总结出来的东西理解才更加深刻,运用才更自如)(当然圆锥曲线的其它题型与方法还有很多,要靠你自己去挖掘,这里不便给出,也不可能给出,因为数学的题型是千变万化的,但也是非常有规律可寻的)
下面留几道题给你做练习
追问
题目呢?
追答
1、已知椭圆G:x^2/4+y^2=1,过点(m,0)做圆x^2+y^2=1的切线l交椭圆G于A,B两点。(1)求椭圆G 的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值。2、P(x0,y0)(y不等于正负a)是双曲线E:x^2/a^2-y^2/b^2=1(a>0,b>0)上一点,M,N分别是双曲的左右顶点,直线PM,PN的斜率之积为1/5(1)求双曲线的离心率3、已知直线L:y=x+m,m属于实数(1)若以点M(2,0)为圆心的圆与直线L相切于点p,且点p在y轴上,求该圆的方程;(2)若直线L关于x轴对称的直线l,问直线l与抛物线C:x^2=4y是否相切?说明理由。4、椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线L与椭圆交于C、D两点,并与x轴交于点p,直线AC与直线BD交于点Q(1)当|CD|=3/2*2的算术平方根时,求直线L的方程;(2)当点P异于A、B两点时,求证:向量OP与向量OQ的向量积为定值。(答案暂时不给出。学会如何分析题目才是最重要的,做题时一定要全身心地投入,不要老是想着对答案)(只要思路对了,答案就不是问题了)
匿名用户
2012-08-24
展开全部
1理解定义,
2掌握一些常用的方法,如点差法
3方程联立和韦达定理,大题几乎必用
这个地方学起来的确很难,一道题要花几十分钟很正常,计算量大但思路比较死
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fishmoon4661
2012-08-24
知道答主
回答量:37
采纳率:0%
帮助的人:17.4万
展开全部
很遗憾。。。主要还是靠算。算多了就快了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式