展开全部
dx/dt=(x²-tx)/(t+1)
所以
d²x/dt²
=d(dx/dt)/dt
=d[(x²-tx)/(t+1)] / dt
=[(x²-tx)' *(t+1)-(x²-tx)* (t+1)' ] /(t+1)²
而(x²-tx)'=2x * dx/dt -x - t *dx/dt=[(2x-t)*(x²-tx)/(t+1)] -x,
(t+1)'=1,
故
d²x/dt²
=[(x²-tx)' *(t+1)-(x²-tx)* (t+1)' ] /(t+1)²
=[(2x-t)*(x²-tx) - x(t+1) -(x²-tx) ] / (t+1)²
=[(2x-t)*(x²-tx) -x²-x] / (t+1)²
所以
d²x/dt²
=d(dx/dt)/dt
=d[(x²-tx)/(t+1)] / dt
=[(x²-tx)' *(t+1)-(x²-tx)* (t+1)' ] /(t+1)²
而(x²-tx)'=2x * dx/dt -x - t *dx/dt=[(2x-t)*(x²-tx)/(t+1)] -x,
(t+1)'=1,
故
d²x/dt²
=[(x²-tx)' *(t+1)-(x²-tx)* (t+1)' ] /(t+1)²
=[(2x-t)*(x²-tx) - x(t+1) -(x²-tx) ] / (t+1)²
=[(2x-t)*(x²-tx) -x²-x] / (t+1)²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |