设f (x)在(0,+∞)内有定义,f′(1)=2,又对于任意的x,y∈(0,+∞)恒有f(xy)=yf(x)+xf(y).求f(x).

chzhn
2012-08-23 · TA获得超过5343个赞
知道大有可为答主
回答量:2951
采纳率:0%
帮助的人:1480万
展开全部
令x=y = 1得f(1) = 0
令 y = 1/x得 0 = f(x) / x + x f(1/x) 所以 f(1/x) = -f(x) / x^2
对x求导得
yf'(xy) = yf'(x) + f(y)
令y = 1/x得f'(1)/x = f'(x)/x + f(1/x) = f'(x)/x - f(x) / x^2
代入f'(1) = 2得
f'(x) - f(x) / x = 2
解这个微分方程得
f(x) = 2xlnx + Cx
f'(x) = 2lnx + 2 + C令x=1得C = 0
所以f(x) = 2 x lnx
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式