(2/2)C.试判断三角形EMC的形状,并说明理由. 40

mbcsjs
2012-08-24 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部

延长CM,交ED的延长线于点G
易得△DMG≌△BMC(AAS)
∴CB=DG,MG=MC
∵DE=AC,AE=BC
∴EG=EC
∴△CEG是等腰直角三角形
∵M是CG的中点
∴△EMC是等腰直角三角形

百度网友dfa0c63
2012-08-26
知道答主
回答量:37
采纳率:0%
帮助的人:10.6万
展开全部
得△DMG≌△BMC(AAS)
∴CB=DG,MG=MC
∵DE=AC,AE=BC
∴EG=EC
∴△CEG是等腰直角三角形
∵M是CG的中点
∴△EMC是等腰直角三角形

参考资料: 百度

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式