高中数学~急!!求详细过程解答
1个回答
展开全部
20. (1) a(n+1)-an=2/[a(n+1)+an-1] => [a(n+1)-an]*[a(n+1)+an-1]=2
bn=(an-1/2)^2=an^2-an+1/4;
b(n+1)=(a(n+1)-1/2)^2=a(n+1)^2-a(n+1)+1/4
b(n+1)-bn=[a(n+1)^2-an^2]-[a(n+1)-an]
=[a(n+1)-an]*[a(n+1)+an-1]
=2
∴ 数列{bn}是公差为2的等差数列
(2) b1=(a1-1/2)^2=(1-1/2)^2=1/4
∴bn=b1+(n-1)d=1/4+(n-1)*2=2n-2+1/4=(8n-7)/4
an≥1,∴an-1/2≥0
∴an-1/2=√bn => an=1/2+√bn=[1+√(8n-7)]/2
(3) am=k=[1+√(8m-7)]/2 => 2k-1=√(8m-7)
=> (2k-1)^2=8m-7 => m=[(2k-1)^2+7]/8
即只要使m的取值为m=[(2k-1)^2+7]/8,即可使am=k
21. (1) f(x)=alnx+x^2-12x+11 => f'(x)=a/x+2x-12
x=4为极值点,则f'(4)=0=a/4+8-12=a/4-4 => a=16
(2) f(x)=16lnx+x^2-12x+11 f'(x)=16/x+2x-12=2(x^2-6x+8)/x=2(x-2)(x-4)/x
定义域为x>0,令f'(x)≥0,可解得x≥4或x≤2
即函数f(x)的单调增区间为(0,2]∪[4,+∞)
令f'(x)≤0,可解得2≤x≤4,
即函数f(x)的单调减区间为[2,4]
(3) 由单调区间可知,函数f(x)在(0,2]上单调递增,在x=2处取得极大值f(2)=16ln2-9;
在[2,4]上单调递减,在x=4处取得极小值f(4)=32ln2-21
在[4,+∞)上单调递增
欲使直线y=b与y=f(x)有3个交点,则直线需落在16ln2-9与32ln2-21之间
即b的取值范围为(16ln2-9,32ln2-21)
bn=(an-1/2)^2=an^2-an+1/4;
b(n+1)=(a(n+1)-1/2)^2=a(n+1)^2-a(n+1)+1/4
b(n+1)-bn=[a(n+1)^2-an^2]-[a(n+1)-an]
=[a(n+1)-an]*[a(n+1)+an-1]
=2
∴ 数列{bn}是公差为2的等差数列
(2) b1=(a1-1/2)^2=(1-1/2)^2=1/4
∴bn=b1+(n-1)d=1/4+(n-1)*2=2n-2+1/4=(8n-7)/4
an≥1,∴an-1/2≥0
∴an-1/2=√bn => an=1/2+√bn=[1+√(8n-7)]/2
(3) am=k=[1+√(8m-7)]/2 => 2k-1=√(8m-7)
=> (2k-1)^2=8m-7 => m=[(2k-1)^2+7]/8
即只要使m的取值为m=[(2k-1)^2+7]/8,即可使am=k
21. (1) f(x)=alnx+x^2-12x+11 => f'(x)=a/x+2x-12
x=4为极值点,则f'(4)=0=a/4+8-12=a/4-4 => a=16
(2) f(x)=16lnx+x^2-12x+11 f'(x)=16/x+2x-12=2(x^2-6x+8)/x=2(x-2)(x-4)/x
定义域为x>0,令f'(x)≥0,可解得x≥4或x≤2
即函数f(x)的单调增区间为(0,2]∪[4,+∞)
令f'(x)≤0,可解得2≤x≤4,
即函数f(x)的单调减区间为[2,4]
(3) 由单调区间可知,函数f(x)在(0,2]上单调递增,在x=2处取得极大值f(2)=16ln2-9;
在[2,4]上单调递减,在x=4处取得极小值f(4)=32ln2-21
在[4,+∞)上单调递增
欲使直线y=b与y=f(x)有3个交点,则直线需落在16ln2-9与32ln2-21之间
即b的取值范围为(16ln2-9,32ln2-21)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询