![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
设△ABC中,a,b,c分别为角A,∠B,∠C的对边,R为△ABC外接圆半径,△为△ABC的面积,求证:R=abc/4△
提示:作AD⊥BC于D,再做△ABC的外接圆,连AO并延长最好可以根据提示做,不过用其他方法也没事...
提示:作AD⊥BC于D,再做△ABC的外接圆,连AO并延长
最好可以根据提示做,不过用其他方法也没事 展开
最好可以根据提示做,不过用其他方法也没事 展开
1个回答
展开全部
根据正弦定理
a/sinA=b/sinB=c/sinC=2R
S=1/2absinC
因为sinC=c/2R
所以S=1/2abc/(2R)=(abc)/(4R)
a/sinA=b/sinB=c/sinC=2R
S=1/2absinC
因为sinC=c/2R
所以S=1/2abc/(2R)=(abc)/(4R)
追问
a/sinA=b/sinB=c/sinC=2R
这个是为什么啊
追答
能否采纳 谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询